京都大学学際融合教育研究推進センター スマートエネルギーマネジメント研究ユニット創設記念シンポジウム 2016年5月11日(水)、京都大学時計台記念館国際交流ホール

研究の概要説明

溶融塩電気化学を用いて エネルギー問題解決を目指す

京都大学 エネルギー理工学研究所 教授 野平 俊之

略歴

- 1989年 埼玉県立浦和高等学校卒業
- 1993年 京都大学工学部原子核工学科卒業(伊藤(靖彦)研)
- 1995年 京都大学工学研究科原子核工学専攻修了
- 1996年 日本学術振興会特別研究員(DC2)
- 1998年 京都大学博士(工学)
- 1998年 京都大学エネルギー科学研究科エネルギー基礎科学専攻 助手
- 2007年 同 准教授
- 2007年 MIT(Prof. D. R. Sadoway) Visiting Scientist (9カ月)
- 2015年 京都大学エネルギー理工学研究所 教授

現在に至る

私の専門分野:電気化学と溶融塩(イオンのみからなる液体)

これまでの研究テーマ

太陽電池

世界の太陽電池導入量(2001-2013年)世界の種類別太陽電池生産量(2013年)

Market Report 2013, EPIA (2014).

<u>結晶系Si太陽電池</u>

- 高効率
- 高耐久性
- 原料豊富
 - 環境調和性

溶融塩電解によるシリカ(SiO₂)直接還元プロセス

塩化カルシウム(CaCl₂) 融点:772

T. Nohira, K. Yasuda, and Y. Ito, *Nature Materials*, 2, 397 (2003).

国内外で注目

Nature Materials, vol.2, p.397-401, (2003) 被引用回数171回

日刊工業新聞、2003年6月17日

ARTICLES

火曜日 2003年(平成15年)6月17日

Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon

TOSHIYUKI NOHIRA*, KOUJI YASUDA AND YASUHIKO ITO

Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 600-8501, Jap e-mail: nohira@energy.kyoto-u.ac.jp

京大 太陽電池用量産化も

な業

谷橋合工谷織

しったの

純度このる金原料にす「応前御を容易いするため」

「器は空藤

	第一日本語 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	2003年以降の研究
⊳ ·	・電解還元のメカニズム等の解明 K. Yasuda, T. Nohira*, K. Amezawa Y. H. Ogata and Y. Ito, <i>J. Electrochem. Soc.</i> , 152, D69 (2005).など4報
⊳ ·	「不純物混入なく、SiO ₂ を還元できる可能性 K. Yasuda, T. Nohira*, R. Hagiwara and Y. H. Ogata, <i>Electrochimica Acta</i> , 53, 106 (2007). など2報
⊳ .	高純度化およびプロセスの連続化を検討
securas na shhiohua	I. IOba, K. Yasuda, I. Nohira*, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda and T. Homma <i>Electrochemistry</i> , 81, 559 (2013). など4報 However, a similar concept cannot be applied th SiO, because the second seco

連続化プロセスの提案と要素研究

(e) 熱電対

代表的な結果 - 大量還元(SiO₂ 50g)

電解後のるつぼ断面写真

HCI処理·HF処理後

T. Toba, K. Yasuda, T. Nohira*, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda and T. Homma *Electrochemistry*, 81, 559 (2013). など4報

- ・提案プロセスの原理確認(世界で唯一の技術)
 - ·高速化·高効率化を研究中(JST-CREST(H23.10~H29.3)

現時点での純度

元素	SOG-Si 許容濃度 / masspp	i £ m	偏析係数		電解Si 目標濃度 / massppm	原料 SiO ₂ / massppm	2007年まで / massppm	現在 / massppm
В	0.1-0.3		0.8		0.13-0.38	< 0.05	14	0.6
Р	0.03-0.14		0.35		0.086-0.4	0.13	3.9	0.39
С	< 10		7′10 ⁻²		< 140	-	10100	520
Ca	< 0.2		1.6´10 ⁻³		< 125	<0.5	14000	120
ΑΙ	< 0.1		2 ′ 10 ⁻³		< 50	<2	32	10
Ti	< 10 ⁻³		9		< 100	1.4	71	1.2
Cr	< 0.1	÷	3 ´ 10 ⁻⁵	=	< 30000	0.6	160	< 0.1
Fe	< 0.1		8		< 12500	0.6	31000	0.79
Mn	< 0.1		1 ′ 10 ⁻⁵		< 10000	0.2	11000	< 0.05
Ni	< 0.1		3		< 30000	<0.4	450	< 0.1
Cu	< 0.1		4 ´ 10 ⁻⁴		< 250	<0.2	470	< 0.1
Мо	< 10 ⁻⁴		4.8´10 ⁻⁸		< 2000	<0.2	160	< 0.1
Ag	< 0.1		1 ´ 10 ⁻⁶		< 100000	<1	540	3.6

分析は主にGD-MS、一部ICP-MS。赤字は目標未達成を示す。

・ホウ素と炭素を除き、目標純度を達成

・さらなる高純度化を研究中(JST-CREST研究)

エネルギー消**費** 従来法(Siemens法): 160 kWh kg⁻¹ 本手法: 13 kWh kg⁻¹

太陽光利用に向けた大型二次電池の必要性

出典:NEDO再生可能エネルギー技術白書(2013年12月)

出典:「スマート革命」の衝撃 - 図解スマートグリッド、エネルギーフォーラム、(2010)

ナトリウム二次電池の可能性及び現状

溶融塩用いたナトリウム二次電池

開発した代表的な2種類の溶融塩

Na[FSA]-[C₃C₁pyrr][FSA] →無機-有機ハイブリット溶融塩

(bis(fluorosulfonyl)amide)

C₃C₁pyrr (*N*-methyl-*N*-propylpyrrolidinium)

[C₃C₁pyrr][FSA]室温溶融塩の特性 低融点 (T_m = 264 K) 高熱安定性 (T_d = 398 K) 電気化学窓が約5 V 高イオン導電率 (6.4 mS cm⁻¹at 298 K)

→低~中温域(-20~100)での使用

A. Fukunaga, T. Nohira et al., J. Power Sources, 209, 52 (2012).

企業との共同研究による大型電池の開発

250Wh cell (3V-83Ah)

9kWh cell assembly (108V-83Ah)

Safety valve (pressure-tunable)

Voltage monitoring lead Safety valve (explosion relief)

х9

A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, J. Appl. Electrochem., 46, 487-496 (2016).

最も実用化に近いナトリウム2次電池として注目

日経	2011/3/4	1面	日経	2013/10/1	日経 2013/12/5
Internet university of an and a set of a set o	チウムイオン電池より価 巡る開発で先手を打つ。 をセ氏300度以上にし 持続力性能を示すエネ 万円を見込む。現在の価で主流になりつつあるリ イオン電池の次の世代を 注目されていたが、温度 にめどを付けた。 で主流になりつつあるリ イオン電池の次の世代を 注目されていたが、温度 にめどを付けた。 かんイオンに代えて安価な 小型化しやすい。車載用 学物質が高い温度で溶ける新しいナトリ 構入できる。新型電池の た。電気自動車 (EV) 品化を目指す。リチウム れまでも電池材料として ウム材料を開発、実用化 購入できる。新型電池の た。電気自動車 (EV) 品化を目指す。リチウム れまでも電池材料として ウム材料を開発、実用化 購入できる。新型電池の や住宅向けの次世代蓄電 て液体になった「溶融塩」京都大学と共同でセ氏57 セトリウムより安く にめどを付けた。 価格は1*52時あたり2 マルウムは豊富に存 ケトリウムのイオンを使 や住宅向けの次世代蓄電 て液体になった「溶融塩」京都大学と共同でを伝いたいう。高温や衝撃に強く、発火 住友電気工業はリチウ 格が約10分の1と安く、 ナトリウムを含んだ化 て溶かした状態を保つ必 高温や衝撃に強く、発火		単で、蓄電シス	た期待されるナトリウム イオン電池 と期待されるナトリウム イオン電池 と期待されるナトリウム イオン電池 と期待されるナトリウム イオン電池 と期待されるナトリウム イオン 電池 と期待されるナトリウム イオン 電池 との 単二 の ひた。 発電開始時にと りつムなどが溶け に な た の 空間の耐久性が要る住宅 りつムなどが溶け とか 空間いやすい。 太陽 用蓄電システムへ実用化 ウムイオン 電池 との 売売を目指す。 大阪 融」 などで作っ の 価格は、 リチウ いて使いやすい。 太陽 用蓄電システムへ実用化 りつムなどが溶け いで使いやすい。 太陽 用蓄電システムへ実用化 りつムなどが溶け いで使いやすい。 太陽 日発表する。 いて の 四の充放電に成功。 10 時あたり10万-90 で 開く電池は100 いて の 価格は、 リチウ の 一本 か で に い か	
			テムを小	表置が高いた。 それの たた。 たて た。 た に に た の た た の た た の た た の た た の た た の た の	16

現在の研究 (1) 溶融塩電解による革新的太陽電池用Si製造法の開発

現在の研究 (2) 溶融塩<mark>電析</mark>による革新的Si太陽電池製造法の開発

現在の研究 (3) 電力貯蔵用 & EV 用溶融塩Na二次電池

1.太陽光発電導入促進のための中型·大型Na二次電池

高サイクル特性、高安全、長寿命、低コスト

2.電気自動車(EV)のための高エネルギー密度Na二次電池

高エネルギー密度、高安全、長寿命

·溶融塩:NaFSA単塩(完全無機)、有機·無機ハイブリッド(室温作動)

・新しい正極材・負極材の開発

·太陽光発電システムとの連携実証(グリーンエネルギーファーム(GEF))

